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Abstract

Evaluating Value at Risk for a firm’s returns during turmoil periods is difficult because there

is too much volatility in the market. We propose to estimate conditional Value at Risk and

Expected Shortfall for a given firm return using quantile regression with cross-sectional informa-

tion from other same-market firms. An illustration with data from the US market from 2000 to

2020 is included. Empirical results show that our model approach has some advantages over a

CAViaR model, which estimates Value at Risk based on the analysis of the univariate time-series

of the firm’s returns without covariates. During crises like the Great Recession (2007-2011) and

the Covid-19 pandemic (2020), Value at Risk at the 5% level are lower for our approach than

for the CAViaR on average. However, the average Expected Shortfall in 2020 is higher for our

approach than for the CAViaR. Implications of adopting quantile regression include an increase

of the average reserves needed to cover extreme events due a lower average Expected Shortfall

in comparison with the average obtained from a CAViaR approximation. However, during the

Covid-19 pandemic, the average reserves would be lower with the quantile regression approxima-

tion. Identification of low risk firms and computer time reduction are also an advantage with the

new method.
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1 Introduction

When evaluating firm’s stock returns tails are essential for investors and regulators to manage invest-

ment decisions and evaluate capital allocation, as they can provide information about the possibility

of future losses of a market asset or a portfolio.

Firm returns’ movements react differently during periods of high market volatility. A univariate

time-series perspective analysis relies only on past information and does not include information about

other firms in the same market. To evaluate the returns of a firm conditional on how the rest of the

firms in the market behave, a cross sectional model is necessary. We propose using a cross-sectional

quantile regression model to study tail returns for one firm using information from other firms in the

same market, and we compare this approach with the CAViaR model, which analyses the time series

of a single firm’s returns.

Value at Risk (VaR) is an easy tool to summarise risks ([Bodnar et al., 1998]). Several

studies have enhanced VaR estimation methods: freedom to choose a probability distribution

([Hull and White, 1998]); new improvements and approaches, like ARCH and GARCH models, that

treat heteroskedasticity as a variable to be modelled ([Engle, 2001]); CoVaR, a measure for systemic

risk for institutions under adverse situations ([Adrian and Brunnermeier, 2011]); and the CAViaR

model, that estimates the tail with autoregressive processes ([Engle and Manganelli, 2004]).

In recent years, innovative ways of estimating VaR to improve risk strategies involving asset eval-

uation have been proposed by many authors (e.g: [Wang et al., 2018]; [Sahamkhadam et al., 2018];

[Lin et al., 2018]; [Kwon, 2019]; [Gribisch and Eckernkemper, 2019]; [Cai and Stander, 2020];

[Pei et al., 2021]; [Bodnar et al., 2021]).

Researchers have remarked the importance of studying high volatility periods, that can be dev-

astating in terms of losses and lack of liquidity (e.g.: [Dias, 2016]; [Alexandridis and Hasan, 2020];

[Babalos et al., 2021]; [Belaid et al., 2021]). In spite of the difficulty to capture variability in high

volatility periods, VaR estimation is a standard practice, i.e. Basel III.
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2 Methodology

2.1 Quantile regression

Quantile regression (QR) aims to fit the quantile of the response variable given a set of covariates

[Koenker and Bassett Jr, 1978, Koenker, 2017]. In our context, QR is a useful method to understand

what influences the possibility of observing extreme returns (see also, [Uribe and Guillen, 2020] for

other applications).

Let yi be a random variable with probability distribution function Fi that depends on covariates

X ′i = {X1i, X2i, . . . , Xki} for i = 1, . . . , N , N is the number of observations, so 0 ≤ Fi(y|Xi) ≤ 1. We

specify the α-th conditional quantile (0 ≤ α ≤ 1) as:

QYi|Xi
(α) = β(α)0 + β(α)1X1i + β(α)2X2i + ...+ β(α)kXki = X ′iβ(α) , (1)

with parameter estimates β̂(α) = arg min
β

E[ρα(Yi −X ′iβ)] where ρα(u) = [α− 1{u<0}]u, and 1{u<0}

is the identity function, with value 1 when the subscript is true and 0 otherwise.

In order to evaluate the performance of a QR model, a scoring function is defined. It aims to

measure the discrepancy between a predicted and an observed value. Let ỹi(α) := X ′iβ̂(α) be the

fitted quantile α for observation i, and yi the observed value for observation i, we define the score

following [Koenker and Hallock, 2001] as:

Q0
α =

1

N

N∑
i=1

[
α− 1{yi≤ỹi(α)}

]
(yi − ỹi(α)) . (2)

Note that Q0
α is a weighted average of the absolute distance between the observed value and the fitted

quantile. The lower the value of Q0
α, the better the approximation.

The Expected Shortfall for a level α is defined as:

ESα(Yi|Xi) = E[Yi|Yi ≤ V aRα(Yi|Xi)] . (3)

The Expected Shortfall (ES), also known as Tail Conditional Expectation (TCE), Conditional Tail

Expectation (CTE) or Tail Value at Risk (TVaR), is a risk measure that approximate the expected

loss conditioned to surpassing VaR.
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2.2 CAViaR model

We will use the CAViaR model to analyse a univariate time series of the returns of one firm, where

yt denotes the return in time t. This model was proposed by [Engle and Manganelli, 2004] and its

general model specification is the following for a given α level:

ft(β) = β0 +

q∑
i=1

βift−i(β) +

r∑
j=q+1

βj l(yt−j) , (4)

where yt−j is the observed return in time t− j. ft(β) is an abbreviation for ft(yt−1, βα), which is the

quantile α at t of the distribution of returns, that depends on the observed variables from previous

periods. βα = (β0, . . . , βr) is the vector of parameters to be estimated. [Engle and Manganelli, 2004]

also incorporate a lag function l(·), in order to link observed values to the information set. The

CAViaR model that we use in this study is called Indirect GARCH(1,1), which defines the quantile

as:

ft(β) = (β1 + β2f
2
t−1(yt−2, βα) + β3y

2
t−1)1/2 . (5)

2.3 Cross-Sectional Quantile Regression versus CAViaR for conditional

VaR estimation of returns

In Cross-Sectional Quantile Regression (CSQR) we fix a point in time t, and we adjust a QR model

for the returns using firms’ characteristics. This allows us to characterize the state of the market.

Once the QR is estimated, we can compare the results of a CSQR model and the corresponding

CAViaR model. Note that the two approaches are essentially different. CSQR uses all firms observed

at a given point in time t and assumes that quantiles depend on firm’s characteristics. CAViaR

assumes that quantiles of a firm’s returns depend on past returns. Based on the CSQR and the

CAViaR approaches, we obtain two different estimates of VaR for each firm at every point in time t.

There are some advantages of using CSQR: 1) The computational requirements to calculate a

quantile regression model at t is lower than to adjust a CAViaR model (Equation (5)) for each firm.

2) The CSQR model uses covariates, which allows us to include exogenous characteristics and to

predict return’s quantiles for external firms that were not initially in our dataset. 3) Finally, time

series models need a minimum observational period, while our approach does not need previous

observations.
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3 Data and characteristics in the Cross-Sectional Quantile

Regression model

Our information database has 204 characteristics for 26,298 different firms between 1990 and 2020

in the US market. Data have a monthly frequency. We combined firm’s data with their returns,

obtained via CRSP. Our baseline specification of CSQR uses the following seven variables: size of

the firm (MC ), book-to-market ratio (BM ), operating profitability (OP), growth rate of investment

(INV ), 12 months momentum (MOM ), liquidity of the firm (LIQ) and market beta (beta). Firm’s

size (MC ) has been constructed using CRSP information like in [Uribe Gil et al., 2021], the other

factors have been retreived from [Chen and Zimmermann, 2020] dataset. The chosen variables cor-

respond to the standard magnitudes used to price average returns using cross-sectional factor firm

characteristics. MC, BM, OP and INV are suggested in [Fama and French, 2020], MOM, LIQ and

beta have been added following the discussions in [Campbell, 2017] and [Malkiel, 2019]. Because of

the CAViaR requirements, we had to restrict our results to firms that had information covering the

whole observational period (438 firms), but our proposed model uses and is able to evaluate all firms

(26,298 firms).

4 Cross-Sectional Quantile Regression model for calculating

VaR: a comparison with CAViaR

In general, high volatility periods may have a big impact on predictions and turn historical analyses

into a mess, as extreme observations incorporate an extra variability to our estimates. In this section

we discuss the differences between the CSQR model and CAViaR for VaR estimation.

Our dataset includes two crisis periods, the Great Recession (2007-2011) and the Covid-19 pan-

demic (2020). Our results are presented only from January 2000 to December 2020, as we used the

initial 10 years to capture the autoregressive momentum needed for estimating CAViaR models. Here

we analyse the 0.05 level, as we want to study losers in terms of returns. The same methodology can

be implemented for any quantile level. Code and results are available from the authors.

Figure 1 shows the average predictions for the 438 firms each time for both CSQR model (purple)
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Figure 1: Average predicted Value at Risk for quantile 0.05 for Cross-Sectional Quantile Regression

model (purple) and CAViaR model (green), from 2000 to 2020, for 438 firms.

and CAViaR model (green). The CSQR model creates a more volatile series of predictions due to the

usage of other returns and covariates, which creates a richer perspective when calculating VaR. We

note how the CAViaR presents a delay on the fitted VaR in comparison with the CSQR model as,

for example for The Great Recession, the decrease on the predicted VaR is delayed between four and

seven months later. We also remark that the CAViaR usually produces less extreme VaR estimates

than the CSQR model, as for high volatility periods the CAViaR model creates higher VaR for the

0.05 level than for the CSQR model, meaning that with the CSQR we detect higher amount of risk,

therefore an increase of the reserves needed for turmoil periods.

Figure 2 shows the observed returns for an individual firm (firm number 24010) in grey points.

The lines show the predictions for the 0.05 quantile using CSQR (purple) and CAViaR (green). We

consider an exception a return lower than a 0.05 fitted quantile. This should occur only 5% of the

times. Exceptions with the same color as the corresponding model refer to returns that are lower than

the fitted VaR for that model but not for the other model, namely, purple crosses mean returns that

we would consider exceptions under the CSQR model but not under the CAViaR model. Green crosses

mean that under the CAViaR model we would consider those returns as exceptions but not under the

CSQR model. Red crosses mean that those returns are considered exceptions for both models. We see

how during the Great Recession (2007-2011) and during the Covid-19 pandemic (2020) the volatility

of the returns increases significantly. If we draw our attention to the quantile predictions during

the Great Recession, we see that the returns for this period are larger than the fitted quantiles for
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Figure 2: Comparison between the evolution of returns and predictions for quantile 0.05 for both

Cross-Sectional Quantile Regression model (purple) and CAViaR model (green) for firm 24010 from

2000 to 2020, monthly data.

the CSQR model. Contrarily, the CAViaR model identifies four points as exceptions, marked in the

graph as green crosses. These differences are an example of a localized potentially biased estimation

of extreme returns during high volatility periods.

The example presented in Figure 2 shows how our method is robust against turmoil periods. The

same happens for almost all our sample firms. More examples of comparisons for other firms between

both models can be seen in Figure 6 in the Appendix.

4.1 Scoring the models and distribution of exceptions

We evaluate quantile estimates. In Table 1 we present the score in Equation (2) for all months and

for the two crisis periods for the CSQR model and the CAViaR model, for 438 firms. In parenthesis,

we present the total number of months when a model (the model in the corresponding row) has had

a lower score than the other model.

In Table 1, the scoring gives the CSQR model a better approximation to the 0.05 quantile during

high volatility periods because the CSQR model has lower scores 12,110 times while CAViaR had

lower scores only 11,431 times. In general terms this would be unnoticed, as overall the CAViaR

models score better 64,279 times compared to only 52,919 times for the CSQR model. We argue that

the CSQR outperforms CAViaR in crises due to the usage of market data, thus it seems that the

CSQR model is able to adapt to a situation of high volatility periods easier than the CAViaR.
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All Great Recession Covid-19 pandemic

Q0
0.05 (2000-2020) (2007-2011) (2020)

Cross-sectional QR 0.97 (52,919) 1.02 (12,110) 1.13 (3,155)

CAViaR 0.88 (64,279) 1.05 (11,431) 1.31 (2,134)

Table 1: Scoring values at the 0.05 quantile for each model and number of months that the model

had a lower (better) score than the other for 438 firms, by periods, .

Figure 3: Kernel plot of the number of exceptions by firm for Cross-Sectional Quantile Regression

model (purple) and CAViaR models (green) from 2000 to 2020 for quantile 0.05 (438 firms). The

dotted line marks value 12.6 (expected number of exceptions, 5% of 21 years, 12 months each).

We draw now our attention to the exceptions. In Figure 3 we observe the kernel of the number

of exceptions for all firms that can be compared in the CAViaR and the CSQR models (438 firms).

For CAViaR models, we expect to have a very high density overlapping the dotted line, because this

model adjusts quantiles in a time-series perspective, leaving approximately a α% of observed values

as exceptions. This corresponds to a benchmark equal to 12.6 in our case (21 years × 12 months

each × 0.05 quantile). We note how, for the CSQR model, the density is more spread and has less

exceptions than the benchmark value. By locating firms in Figure 3, we can identify firms that

have more exceptions than expected, and consider them under-performing. The CSQR model has no

assumptions on the number of exceptions, which makes CSQR ideal for identifying well-performing

firms in terms of returns.

We assume, for both tested models, that exceptions do not depend on the moment in time.
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Thus, a non-equal distribution of exceptions over time indicates a bad performance of the model.

We performed a Kolmogorov-Smirnoff test for the duration between exceptions for both CSQR and

CAViaR models, where the null hypotesis tests equal distribution of durations with an exponential

duration with parameter equal to the average of durations, and the alternative hypotesis assumes

a different distribution. Results indicate that for the great majority of firms the null hypotesis was

not rejected. For the few firms that the null hypotesis was rejected, the CAViaR model represents a

greater number of cases than the CSQR model. In order to find stronger evidence of these conclusions,

an expansion of the dataset, time-series wise, is recommended.

4.2 Comparison of Value at Risk and Expected Shortfall estimation

In Figure 4 we present the average VaR for all 438 firms splitted by periods calculated using CSQR

and CAViaR models.

Figure 4: Kernel of estimated Value at Risk using Cross-Sectional Quantile Regression model (purple)

and CAViaR model (green) for quantile 0.05, for the whole period (2000 to 2020, left), the Great

Recession (2007 to 2012, middle) and Covid-19 pandemic (2020, right), for 438 firms.

We note how the VaR for quantile level 0.05 calculated with the CSQR model is, on average,

lower than the VaR calculated using CAViaR model for all periods (left subfigure). For high volatility

periods (center and right subfigures), the CAViaR model seems to have a group of firms with a fitted

VaR lower that the VaR fitted with the CSQR. So the density of CAViaR adjusted VaRs is above

the density of the CSQR adjusted VaRs on the left of the subfigure.

We calculate the ES in order to quantify the average loss beyond quantiles and we also compate

the results under the two approaches. The empirical ES is obtained as the average of returns of
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exceptions, i.e. returns below the predicted VaR at level 0.05. ES indicates the magnitude of loss

that is needed to cover average losses beyond the VaR. For quantile level 0.05 and for each firm, we

have estimated the ES using the CSQR model and the CAViaR model.

Figure 5: Kernel of estimated empirical ES using Cross-Sectional Quantile Regression model (purple)

and CAViaR model (green) for quantile 0.05, for the whole period (2000 to 2020, left), the Great

Recession (2007 to 2012, middle) and Covid-19 pandemic (2020, right), for 438 firms.

In Figure 5 we observe the difference between empirical ES for the CSQR model and the CAViaR

model, separated by periods. For the whole period (left subfigure), in general, average ES for the

CAViaR model are greater than average ES from the CSQR model, meaning that on average the

requirements of capital should be increased when using the CSQR model instead of a time-series

perspective as in the CAViaR approach. We note that, for the high volatility periods (center and

right subfigures), the CSQR model predicts average ES levels similar to those of the CAViaR model.

In the Covid-19 period (right subfigure), capital requirements would be lower with the CSQR model

in comparison with the CAViaR approach, because the density of average estimated ES has shifted

to the right.

The CAViaR model overestimates ES during high volatility periods in comparison with the CSQR

as seen in Figure 1, and does not capture the effect of those market situations, while the CSQR model

is able to adapt to those situations, as seen in Figure 5. Choosing one model or the other is not

equivalent for investment decisions.
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5 Conclusions

We proposed a Cross-Sectional Quantile Regression model using seven firm characteristics in order

to evaluate the return’s tail behaviour. For each firm, we focus on the predicted VaR using CSQR

and compare it with the VaR estimated using a CAViaR model.

We included two high volatility periods, the Great Recession (2007-2011) and the Covid-19 out-

break (2020). The CSQR model shows lower estimated quantile 0.05 over high volatility periods

compared to a CAViaR approach. Scoring results show a better performance for the CSQR model

for quantile 0.05 during both periods of turmoil and a lower number of exceptions.

With CSQR, the VaR and empirical ES are, on average, lower than the calculated using CAViaR

models. For high volatility periods, the ES using CSQR increases, surpassing the ES calculated with

the CAViaR for the Covid-19 pandemic. This translates, from a risk management point of view, in

an increase of reserves if CSQR models are used instead of CAViaR models, due to a lower predicted

VaR for quantile 0.05. But, from an investor perspective, it is easier to identify firms that have a

larger losers tail with the CSQR model than with the CAViaR model during high volatility periods

because CSQR produces estimates that are more spread.

Using a CSQR model can be an enhancement for evaluating company returns, and can provide

an improvement in calculations of reserves during turmoil periods and allows quantile approximation

for out-of-sample firms.
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optimization based on GARCH-EVT-Copula forecasting models. International Journal of Fore-

casting, 34(3):497–506.

[Uribe and Guillen, 2020] Uribe, J. M. and Guillen, M. (2020). Quantile Regression for Cross-

Sectional and Time Series Data: Applications in Energy Markets Using R. Springer.

[Uribe Gil et al., 2021] Uribe Gil, J. M., Guillén, M., and Vidal-Llana, X. (2021). Rethinking Asset

Pricing with Quantile Factor Models. IREA–Working Papers, 2021, IR21/04.

[Wang et al., 2018] Wang, J.-N., Du, J., and Hsu, Y.-T. (2018). Measuring long-term tail risk: Eval-

uating the performance of the square-root-of-time rule. Journal of Empirical Finance, 47:120–138.

Appendix

13



Figure 6: Comparison between the evolution of returns and predictions for quantile 0.05 for both Cross-Sectional Quantile Regression model (purple) and CAViaR

model (green) for firms 10550, 17137, 21573, 45728, 51263, 54704, 57568, 61313 and 62092 from 2000 to 2020, monthly

.
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